

OROVALLE-ESTRUCTURA



ACTUACIONES:

- •FORMACION A TODOS LOS NIVELES EN MATERIA DE SEGURIDAD
- •ELABORACION DE PROCEDIMIENTOS DE TRABAJO
- •CAMPAÑAS FORMATIVAS E INFORMATIVAS MENSUALES
- •INSPECCIONES Y AUDITORIAS PLANIFICADAS DE SEGURIDAD
- •FORMACION ESPECIFICA (TEORICO PRACTICA) EN MATERIA DE SEGURIDAD A TODOS LOS SUPERVISORES. LIDERAZGO EN SEGURIDAD
- •I+D+i, EN SEGURIDAD

• LOGROS:

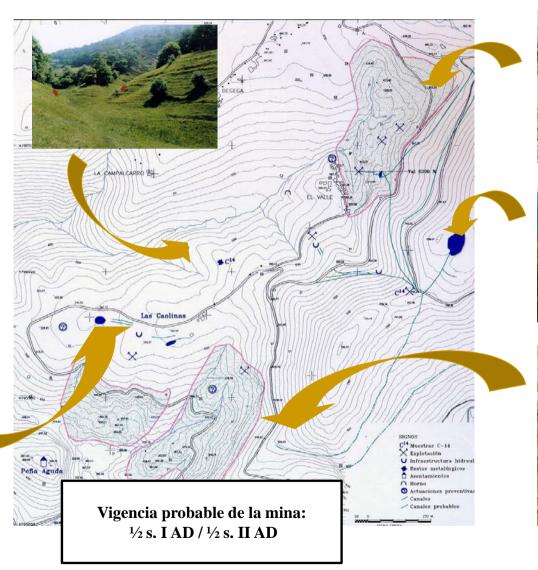
- •REDUCCION DE ACCIDENTES CON TIEMPO PERDIDO
- •REDUCCION DE ACCIDENTES TOTALES
- •REDUCCION DEL INDICE DE FRECUENCIA Y EL DE GRAVEDAD

• OPORTUNIDADES:

- •OBJETIVO 0 ACCIDENTES
- •MEJORA DE LOS PROCEDIMIENTOS DE TRABAJO
- •INCREMENTO DE LA PRODUCCION
- •CONCILIACION VIDA LABORAL Y FAMILIAR

SOCIAL CORPORATIVO - OROVALLE

- > OroValle genera más de 1.000 puestos de trabajo en las localidades en las que está presente, de los cuales más de 500 son trabajadores directos. Esta cifra representa alrededor del 7% de la población activa de las comarcas en las que opera.
- Adicionalmente a sus costes operativos, OroValle ha invertido en Asturias más de 51 millones de euros desde 2012.
- OroValle extrae oro, cobre y plata, por ese orden de producción, en el Cinturón de Oro del Río Narcea, zona de histórica tradición aurífera minera que se remonta a la época del Imperio Romano. OroValle opera las minas de El Valle-Boinás y Carlés, en las comarcas de Belmonte de Miranda y Salas en el Principado de Asturias.
- Los romanos extrajeron mineral de oro en la zona hace 2.000 años (3,2 millones de onzas).
- En la historia reciente los primeros sondeos y exploraciones en la zona se situan en los primeros años 70.
- > Rio Narcea Gold Mines operó las mina a cielo abierto entre los años 1996 y 2006, momento en que cerró la operación, habiendo iniciado ya la explotación en subterranea en ambas minas.
- ➤ Kinbauri adquirió los derechos mineros en 2007 y se integró en Orvana en 2009.
- > Orvana, primero bajo el nombre de Kinbauri, actualmente OroValle, opera las minas subterránea desde el año 2010 hasta la actualidad.
- > Actualmente la vida estimada de la mina es hasta el 2024.
- La compañía apuesta por una minería sostenible y busca operar bajo las mejores prácticas empresariales y los máximos estándares medioambientales. En este sentido, OroValle sigue ampliando y actualizando la tecnología empleada en sus instalaciones. Desde el año 2014, la compañía ha invertido más de 2 millones de euros en el *Plan de restauración e innovación medioambiental 2014-2021*.
- OroValle está comprometida con el desarrollo de las comunidades en las que opera. Para ello, trabaja con empresas locales generando sinergias y colabora con diferentes iniciativas importantes en la región como son, entre otras; el museo del Aula del Oro en Belmonte de Miranda, la Universidad de Oviedo, la Feria anual del Salmón del Río Narcea, en Salas, la Real Asociación de Pesca Fluvial de Asturias, con quien realiza sueltas
- > coordinadas de alevines de trucha en los ríos de la región. OroValle también colabora con los Ayuntamientos vecinos en diferentes iniciativas educativas, culturales y deportivas.



OROVALLE

Existe no obstante un punto de especial interés que debe ser considerado con atención. En términos generales, los investigadores mantienen la opinión de que las poblaciones prerromanas practicaron el beneficio aurífero exclusivamente mediante la técnica de bateo10 desconociendo la minería a gran escala y su explotación de forma regular (SANCHEZ-PALENCIA y otros, 1996, 46). Las excavaciones arqueológicas desarrolladas durante los últimos años han puesto de manifiesto la validez general de esta teoría. Entonces, ¿Cómo deben interpretarse los resultados obtenidos en al menos dos de las muestras recuperadas en viejas galerías de Boinás?. Los análisis apuntan fechas muy anteriores a la conquista que los sitúan en torno al siglo II a.C., su contexto geológico se encuentra indiscutiblemente ligado a materiales potencialmente explotables y su presencia a esas profundidades no parece justificarse más que como resultado de un audaz e inteligente trabajo minero. Estos datos podrían significar, de confirmarse la naturaleza de los restos, la práctica de algunas formas de minería compleja por parte de poblaciones indígenas y, por tanto, su capacidad para el reconocimiento de vacimientos susceptibles de beneficio. Roma habría encontrado en estas labores el mejor de los indicios para abrir sus primeras explotaciones en Asturias y tal vez la mano de obra experimentada para extender la búsqueda del preciado metal a otras regiones.

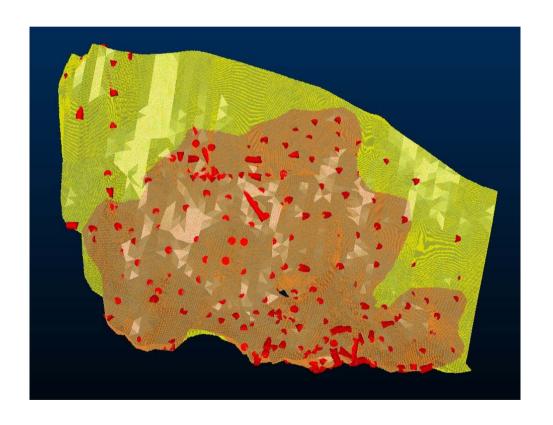
HISTORIA RECIENTE DEL PROYECTO EL VALLE BOINAS - CARLES

Year	Company	Location	Activity
1971-1972	Gold Fields Española, S.A.	Carlés	Mapped Carlés skarn, soil and outcrop sampling, geochemical analyses, surface magnetometer survey
1981	Boliden Minerals A.B.	La Ortosa	La Ortosa granodiorite geological mapping, soil geochemical and geophysical surveys on 600 m by 500 m grid, seven drill holes amounting to 1,085 m
1985	Exploraciones Mineras del Cantábrico S.A.	Carlés	Three drill holes totalling to 346 m
1985	Anglo American Company (AAC)	Carlés	1:6,000 and 1:25,000 aerial photography, photo geologic and outcrop mapping (1:1,000)
			253 outcrop samples
			240 soil samples
			1,292 m of RC drilling from 25 holes
			13,147 m of core drilling from 58 drill holes assayed Au, Cu, As
			Geotechnical studies and preliminary bench metallurgical test work
1990	AAC & Hullas del Coto Cortés, S.A. (HCC)	Carlés	910 m of decline, +70, +40, +18 levels, 200 m of ore drives and 80 m of raises
			600 underground panel samples, 189 channel samples, 140 muck samples
			90 samples weighing a total of 36 tonnes sent to American Research Laboratories in Johannesburg, South Africa for large-scale metallurgical
			testwork
			6,012 m of core drilling in 108 holes
		Godán/El Valle Boinás	Mapping of Roman Pits, collected 858 samples, magnetometer, soil geochemical surveys
1991	AAC & HCC	Godán/El Valle Boinás	8,932 m of drilling from 43 holes at Boinás East, El Valle and Godán
		Carlés	Feasibility study
1992	AAC, HCC and Concord Joint Venture	La Brueva/El Valle Boinás	Mapping, trenching and drilling of the west breccia over 250 m strike length
1994	Rio Narcea (AAC, HHC and Concord)	La Brueva/El Valle Boinás	9,727 m of drilling in 50 holes at El Valle, Pontigo Prospect, Villaverde Prospect, Antonana and La Brueva
1994-1995	Rio Narcea	La Brueva/El Valle Boinás	Delineation and infill at El Valle and target testing at Villaverde, Antoñana, Millara and La Brueva prospects
1996	Rio Narcea	El Valle Boinás	Infill drilling in the Black Skarn, feasibility study on the Boinás East Zone
1000	No Naroca	Carlés	16,283 m in 96 drill holes of infill drilling (drilling to 25 m spacing to 100 m below surface and to 50 m spaced drilling 200 m below surface)
1996-1998		Godán	5.656 m in 17 drill holes
1997-1998		El Valle Boinás	Commencement of open pit at Boinás West (870,000 tonnes mined for 115,000 Au ounces at a grade of 4.1 g/t Au by end of 1998)
1999, 2001			Commencement of open pit at Boinás East (1,215,000 tonnes for 192,450 ounces of gold at a grade of 4.93 g/t Au and 0.52% Cu)
1999			Boinás West pit backfilled with waste from Boinás East open pit
1999-2003			Mining at Ell Valle open pit (2,760,000 tonnes for approximately 600,000 ounces of gold). Included mining of Caolinas zones and Charnela zone
2000-2002		Carlés	Surface mining at Carlés North (64,000 tonnes produced for 9,320 Au ounces at a grade of 4.54 g/t Au)
2002-2003		El Valle Boinás	Feasibility study for underground mining at Boinás East
2003		Carlés	Dewatering of the decline followed by underground drilling
2003-2006		Carlés	Underground production (296,000 tonnes for 49,000 Au ounces at grade of 5.22 g/t Au and 0.76% Cu)
2004-2006		El Valle Boinás	Underground mining commenced at Boinás East, closed due to rising costs, insufficient mill feed and excessive dilution
2004-2006		All properties	38,655 m of drilling

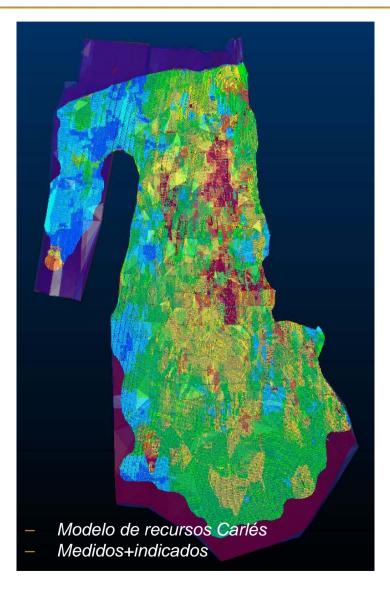
PRINCIPALES DATOS PRODUCTIVOS DE OROVALLE

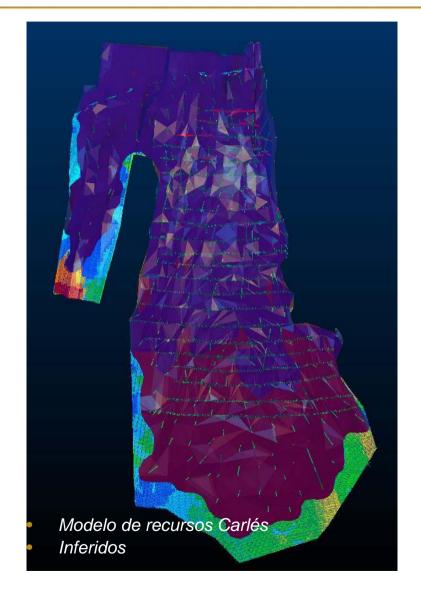
	FY2016
Operating Performance	
Ore mined (tonnes) (wmt)	479,077
Ore milled (tonnes) (dmt)	452,003
Daily average throughput (dmt)	1,235
Gold	
Grade (g/t)	3.27
Recovery (%)	94.0
Production (oz)	44,682
Sales (oz)	44,009
Copper	
Grade (%)	0.56
Recovery (%)	76.5
Production ('000 lbs)	4,257
Sales ('000 lbs)	4,292
Silver	
Grade (g/t)	12.47
Recovery (%)	79.7
Production (oz)	144,411
Sales (oz)	145,588

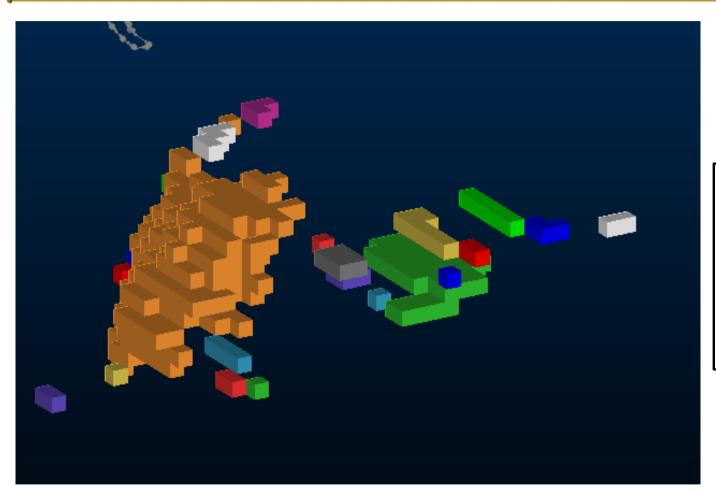
Para 2017 se estima una producción:


- ✓ 50,000 y 55,000 onzas de oro,
- √ 6,0 y 6,5 millones de libras de cobre
- ✓ 170.000 y 200.000 onzas de plata.

- Modelo de recursos Area 107
- Indicados/Inferidos

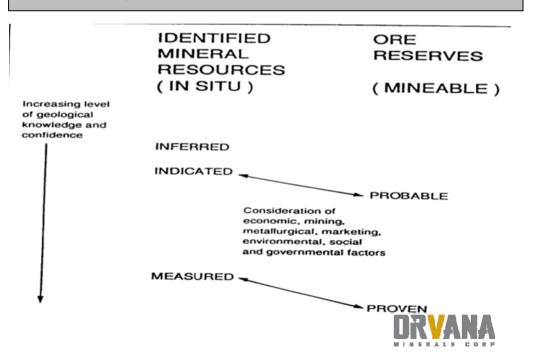



- Modelo de recursos Area 107
- 2 elipsoides / 2 orientaciones del cuerpo mineral



EVALUACIÓN RESERVAS MRO (Mineable Reserves Optimizer)

- Bloques minables de 4x4m.
- AuEq> 4.5g/t (Óxidos) / AuEq> 2.6g/t (Skarn)
- Reservas (Probadas + Probables).
 - Ejemplo Imagen: Zona Villar


PRINCIPALES DATOS DE RECURSOS DE OROVALLE

RECURSOS EL VALLE MINE – SEPTIEMBRE30, 2016

EL VALLE MINE - SEPTIEMBRE30, 2016										
Medidas										
Zone	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Contained Metal (000 oz Au)	Contained Metal (000 t Cu)				
El Valle Oxides El Valle Skarns Carlés	880.3 2,258.2 129.2	4.11 2.56 4.06	1.03 0.55 0.83	20.63 13.38 11.09	116.4 185.6 16.9	9.0 12.5 1.1				
Total	3,267.7	3.04	0.69	15.24	318.9	22.6				
Indicadas										
Zone	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Contained Metal (000 oz Au)	Contained Metal (000 t Cu)				
El Valle Oxides El Valle Skarns Carlés	1,716.0 1,078.1 748.2	6.78 2.74 3.96	0.53 0.44 0.49	8.24 14.20 7.75	374.0 95.0 95.3	9.2 4.7 3.7				
Total	3,542.3	4.95	0.49	9.96	564.3	17.5				
Inferidas Contained Contained										
Zone	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Metal (000 oz Au)	Metal (000 t Cu)				
El Valle Oxides El Valle Skarns Carlés Skarns	2,091.8 2,673.9 1,056.4	6.70 3.30 4.40	0.44 0.52 0.45	5.17 14.01 5.85	450.5 283.6 149.6	9.3 14.0 4.8				
Total	5,822.1	4.72	0.48	9.35	883.7	28.1				
Inferidas Contained Contained										
Zone	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Metal (000 oz Au)	Metal (000 t Cu)				
La Brueva	105.2	4.73	0.10	20.73	16.0	0.1				

Ley de corte equivalente para el cálculo de recursos ("AuEq") es:

- √ 3.5 g/t para El Valle Óxidos.
- ✓ 2.1 g/t para El Valle skarns.
- √ 2.6 g/t para Carlés skarns.

PRINCIPALES DATOS DE RESERVAS DE OROVALLE

El Valle Mine – Septiembre 30, 2016 Reservas

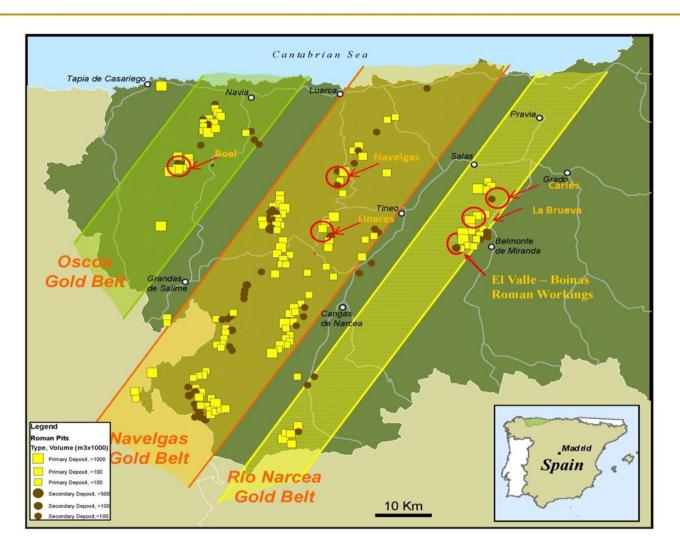
Probado									
Category	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Contained Metal (000 oz Au)	Contained Metal (000 t Cu)			
El Valle Oxides	402	3.47	0.93	15.88	44.9	3.7			
El Valle Skarns	932	2.07	0.50	11.84	62.0	4.7			
Carlés Skarns	0	0.00	0.00	0.00	0.0	0.0			
Total	1,334	2.49	0.63	13.06	106.9	8.4			
Probables									
Category	Tonnage (000 t)	Grade (g/t Au)	Grade (% Cu)	Grade (g/t Ag)	Contained Metal (000 oz Au)	Contained Metal (000 t Cu)			
El Valle Oxides	536	6.58	0.36	6.52	113.4	1,9			
El Valle Skarns	539	2.08	0.41	11.97	36.0	2.2			
Carlés Skarns	156	2.76	0.45	7.09	13.9	0.7			
Total	1,231	4.13	0.39	8.98	163.3	4.8			

Las reservas son calculadas con las siguientes leyes de Corte:

- √ 4.5 g/t AuEq para El Valle Óxidos.
- ✓ 2.6 g/t AuEq para El Valle skarns.
- √ 2.7 g/t AuEq para Carlés Skarns.
- ✓ SOFTWARE UTILIZADO PARA CÁLCULO DE RECURSOS Y RESERVAS ES EL DATAMINE.
- ✓ TANTO EN RECURSOS COMO EN RESERVAS SE EMPLEA LAS DIRECTRICES MARCADAS POR EL NI 43-101

DERECHOS MINEROS DE OROVALLE

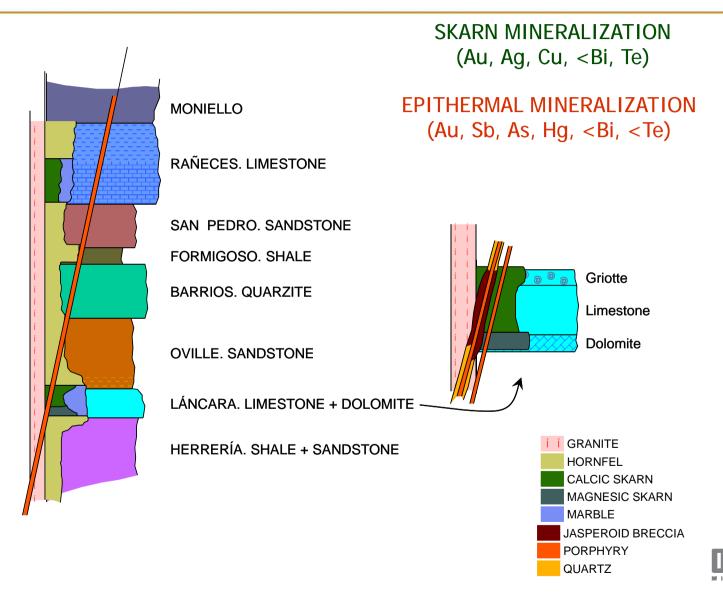
1. Río Narcea Gold Belt


- √ 14 Derechos Mineros
- ✓ 2 Permisos de Investigación

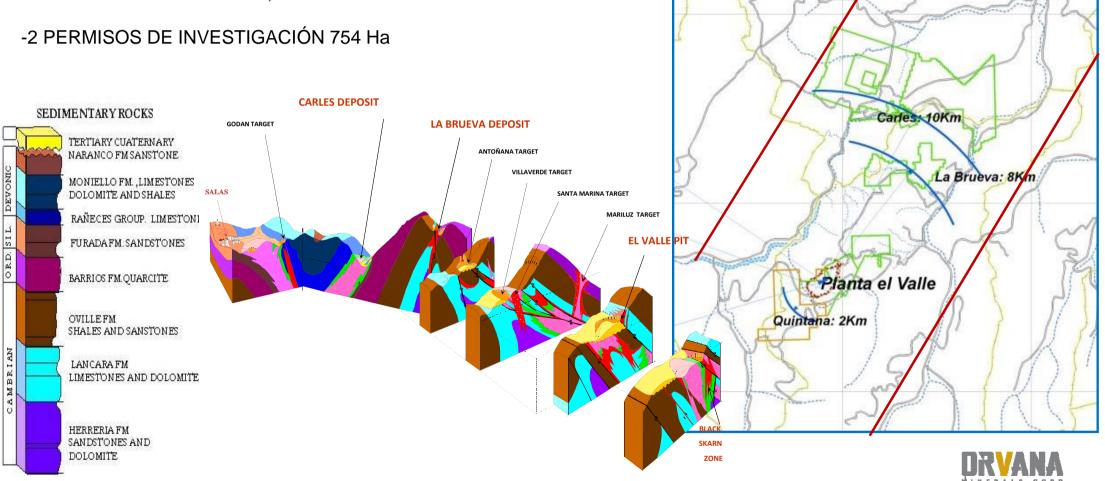
2. Navelgas Gold Belt

- √ 1 Permiso de Investigación
- √ 3 Permisos de Investigación en Tramite

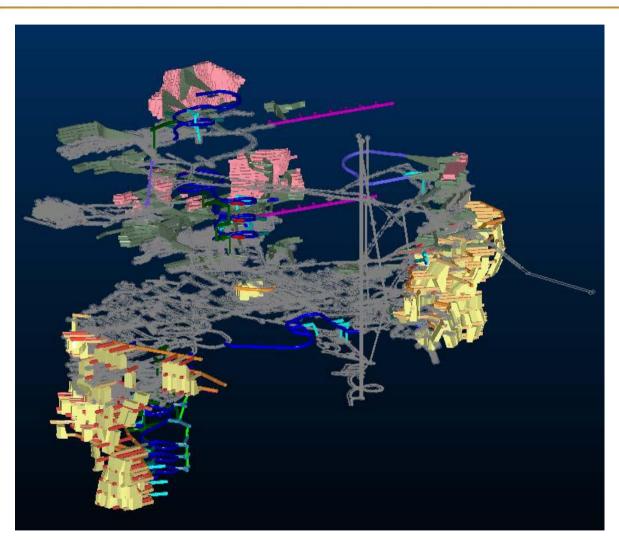
3. Oscos Gold Belt


√ 1 Permisos de Investigación en Tramite

FORMACIÓN GEOLÓGICA- EL VALLE BOINÁS

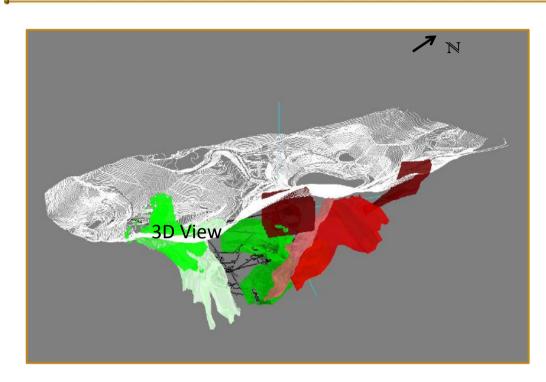


Río Marcea Gold Belt

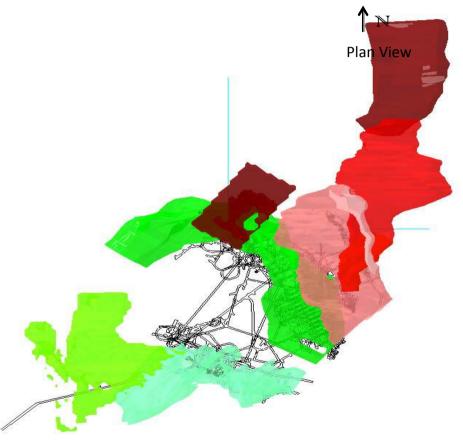

Río Narcea Gold Belt:

-14 DERECHOS MINEROS 4,298 Ha

DISEÑO CONCEPTUAL MINA- BOINAS


Tras Evaluación con MRO:

- Diseño Conceptual de la mina (Datamine Studio 5D Planner)
- En la Imagen: Diseño LOM Boinás (Actualización 12/12/2016)



Principales Zonas Mineralizadas:

- -Skarn (Verde)
- -Oxides (Marron y Rojo)

GEOLOGÍA EL VALLE-BOINÁS - DETALLE

-Skarn Mineralization

*AGE: K-Ar > 300 MY (Biotite, Phlogopite)

*TEMP.: 600º-700ºC DEPTH: 3.5-5 Km.

*ALTERATION AND MINERALIZATION:

Limestone → Ca Sk (Pyroxene) Hedenbergite Mgt, Py, Cpy, Apy, weak Au

Dolomite → Mg Sk (Black Skarn) Serpentine Mt, Cpy, Bn, strong Au, Ag, Cu, Bi

-Epithermal Mineralization (Oxides)

*AGE: K-Ar 265-285 MY (Sericite)

*TEMP.: 1859 - 2309C DEPTH: <<1 Km.


*ALTERATION AND MINERALIZATION:

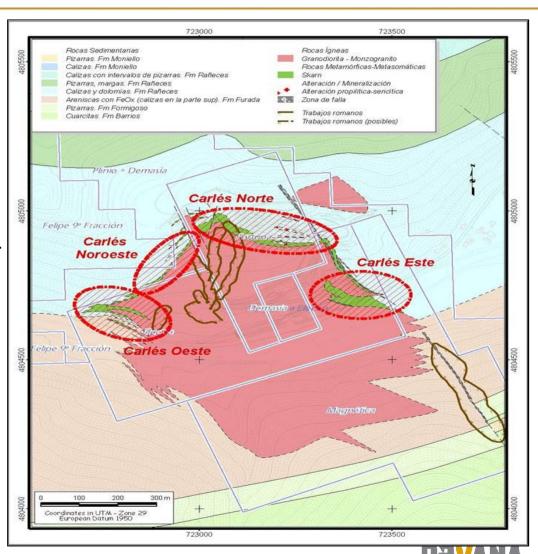
Low Sulfidation – Jasperoid, Jasp.Bx, Qtz, Cal, Adularia, Clay alt.

Silicification:

Skarn: strong Au, native Cu, << Ag, Bi, Te, As

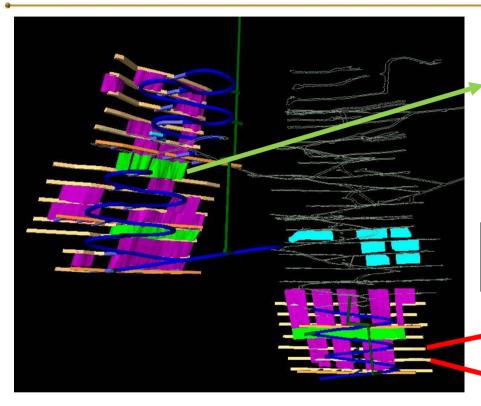
Carbonates: mod – strong Au, native Cu, < As, Sb, Hg

GEOLOGÍA GENERAL CARLES

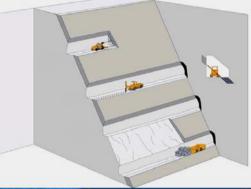

Skarn Mineralization

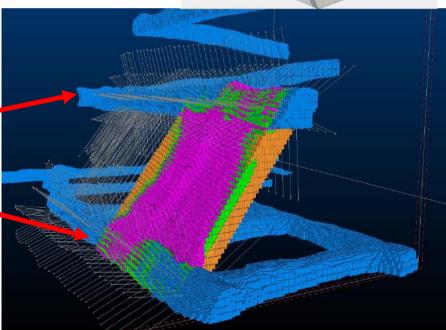
*AGE: K-Ar > 287 MY

*TEMP.: 400º-575ºC


*ALTERATION AND MINERALIZATION:

Limestone → Ca Sk (Pyroxene-garnet) Mgt, Cpy, Bn, Apy, Au.



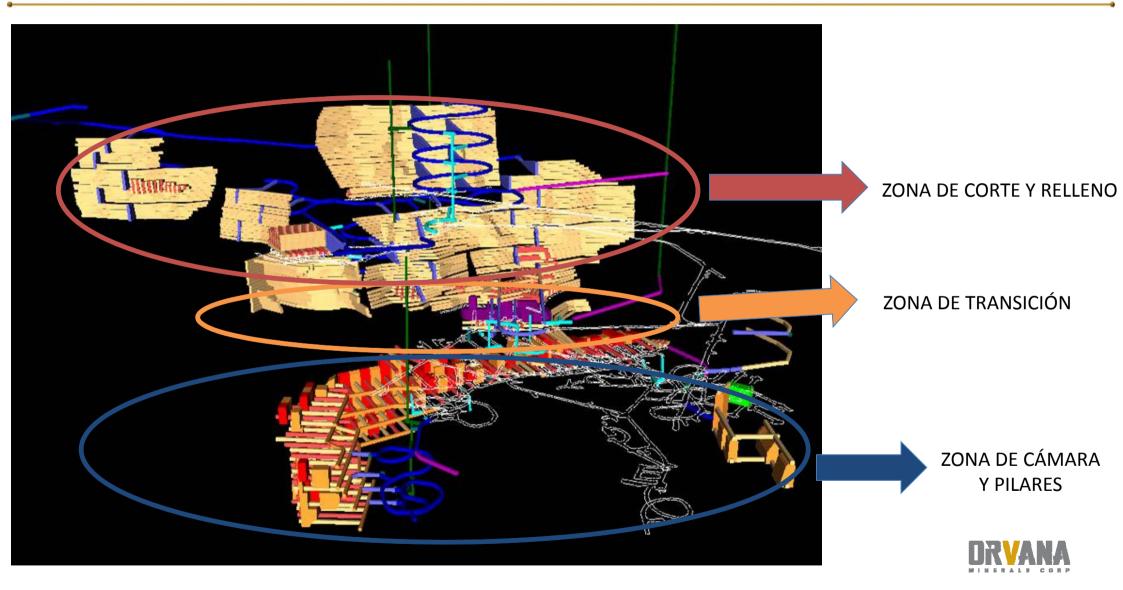

OPERACIÓN MINERA -CARLES

PILAR CORONA 20 ML DE POTENCIA CADA 100 ML

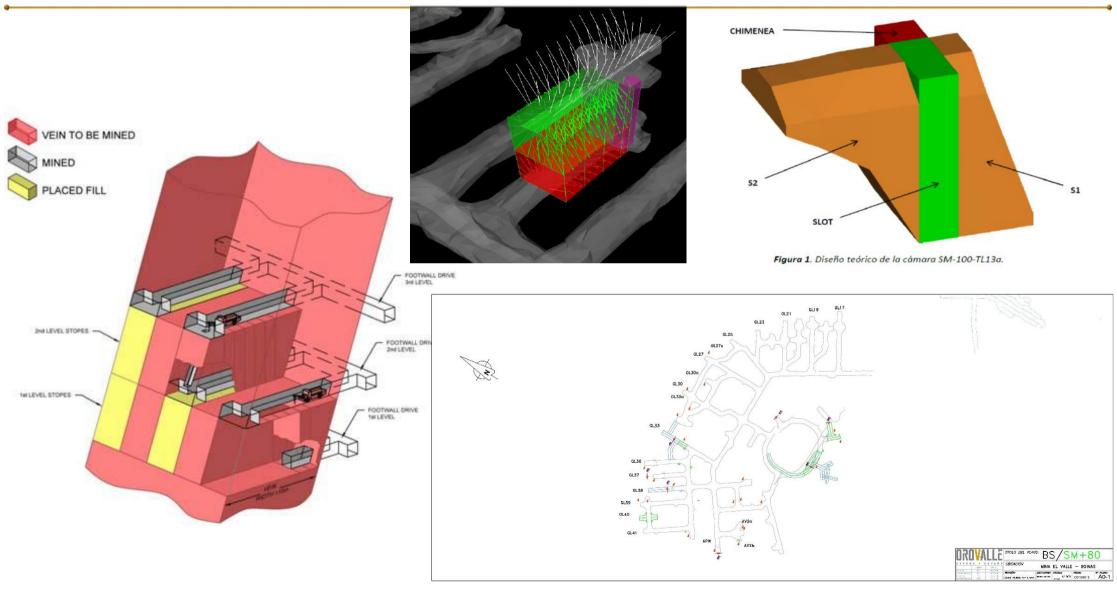
SEPARACIÓN ENTRE NIVELES 20 ML

Filón sub-vertical de Skarn, perfectamente definido.

Potencia aproximada 4,5 ml.


Techo, mármol y muro granodiorita.

Inclinación entre 75 y 55º, disminuyendo en profundidad.



EXPLOTACIÓN POR CÁMARAS Y PILARES- DISEÑO

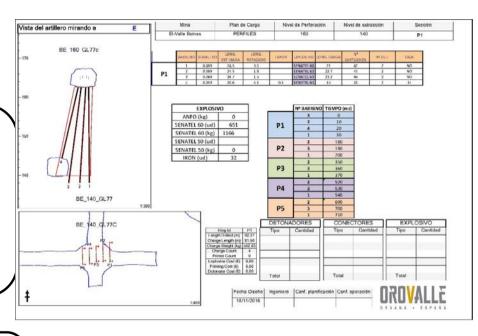
EXPLOTACIÓN POR CÁMARAS Y PILARES- EJECUCIÓN

		SM-100-13a resultados											
		DILUIDAS											
	MINA	ZONA	CAMARA	VOLUMEN	TONELADAS	DENSIDAD	AU	CU	AG	AUEQ			
Chimenea	Boinás	SM	a	240.00	727.20	3.03	1.59	0.75	10.49	2.59			
Slot	Boinás	SM	a	510.00	1545.30	3.03	2.11	0.75	10.67	3.11			
S1	Boinás	SM	a	1155.35	3500.71	3.03	1.59	0.87	10.98	2.74			
S2	Boinás	SM	а	1473.68	4465.25	3.03	3.16	0.59	16.62	4.05			
TOTAL				3379.03	10,238.46	3.03	2.35	0.72	13.36	3.36			

Tabla 1. Toneladas y leyes diluidas.

EXPLOSIVOS Y ACCESORIOS:

EMULSIONES ANFO DETONADORES ELECTRONICOS


DETONADORES ELECTRONICOS

VENTAJAS

- 1. TOTAL CONTROL Y PRECISION DE TIEMPO
- 2. FLEXIBILIDAD EN TIEMPOS Y NUMERO DE DETONADORES
- 3. SEGURIDAD EN MANEJO E INICIACION
- BENEFICIOS EN LA PRODUCCION Y MANTENIMIENTO

DESVENTAJAS

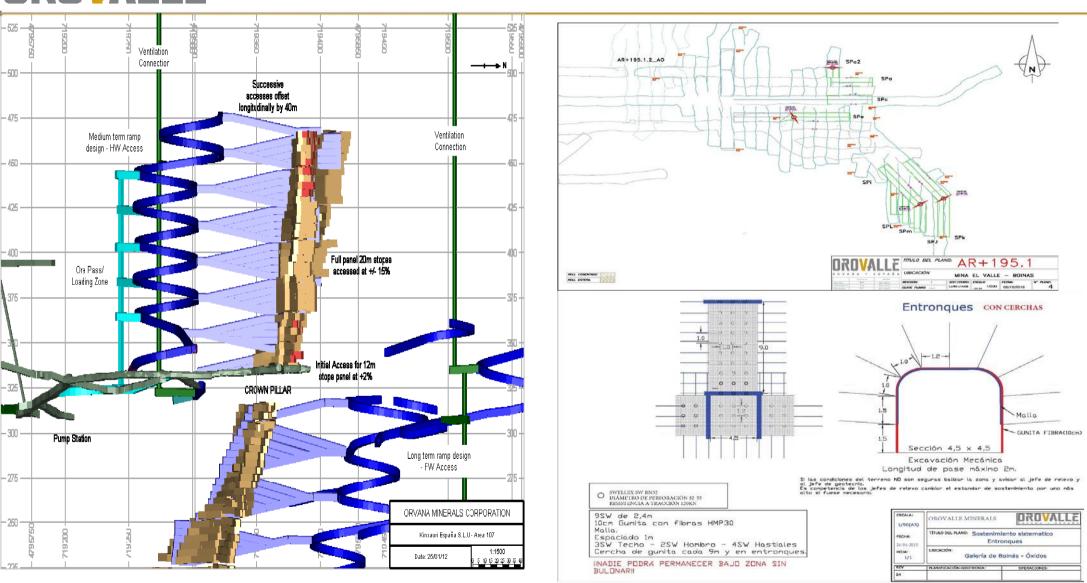
- 1. COSTE POR UNIDAD
- 2. VISION DE BENEFICIOS MEDIO LARGO PLAZO

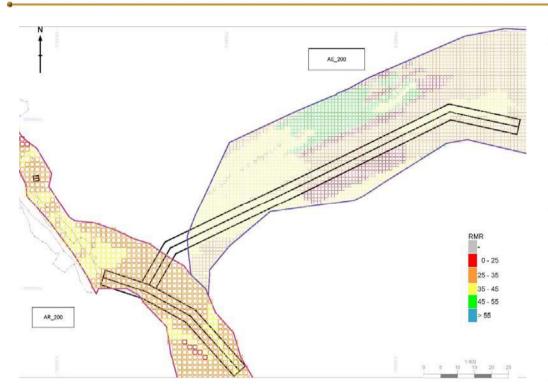
PIEDRA: 2,5m

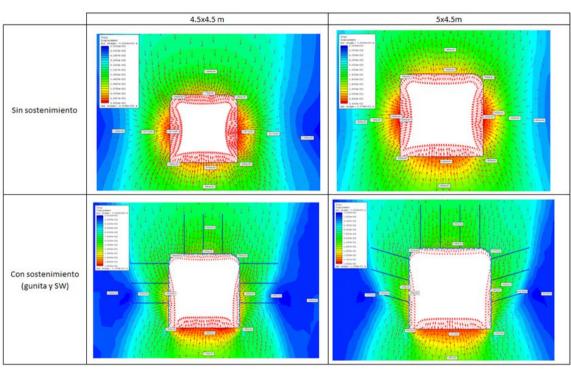
ESPACIAMIENTO: 2 m

Ce: 0,54 Kg/m3

FACTOR DE POTENCIA: 0,16-0,20 Kg/T TONELADAS/METRO PERFORADO: 18




OROVALLE


EXPLOTACIÓN CORTE Y RELLENO - DISEÑO

EXPLOTACIÓN - DISEÑO GEOTÉCNICO

DATOS OBTENIDOS DE LA BASE DE SONDEOS

DATOS INTERPRETADOS EN SOFTWARE PHASE 2

OROVALLE

TRANSPORTE:

8 CAMIONES MT

3 VOLVOS A25

CARGA:

3 PALAS ST 1030

3 LH 514

1 LK 410

ARRANQUE:

4 BODCAT-E85

1 CASE CX80

SOSTENIMIENTO:

2 MIXKRET

1 HURON

ROBOT GUNITA SPM 4210

ROBOT GUNITA SIKA 410

PERFORACIÓN:

JUMBOS

2 S1D -ATLAS

2 282 -ATLAS

1 DD 320 -SANDVIK

1 SIMBA 4353

2 SIMBAS 1354

1 SIMBA M6-C

2 BOLTEC - MD

EQUIPOS AUXILIARES:

MANITOUS

CAMIONES DUX-TTE EXPLOSIVOS.

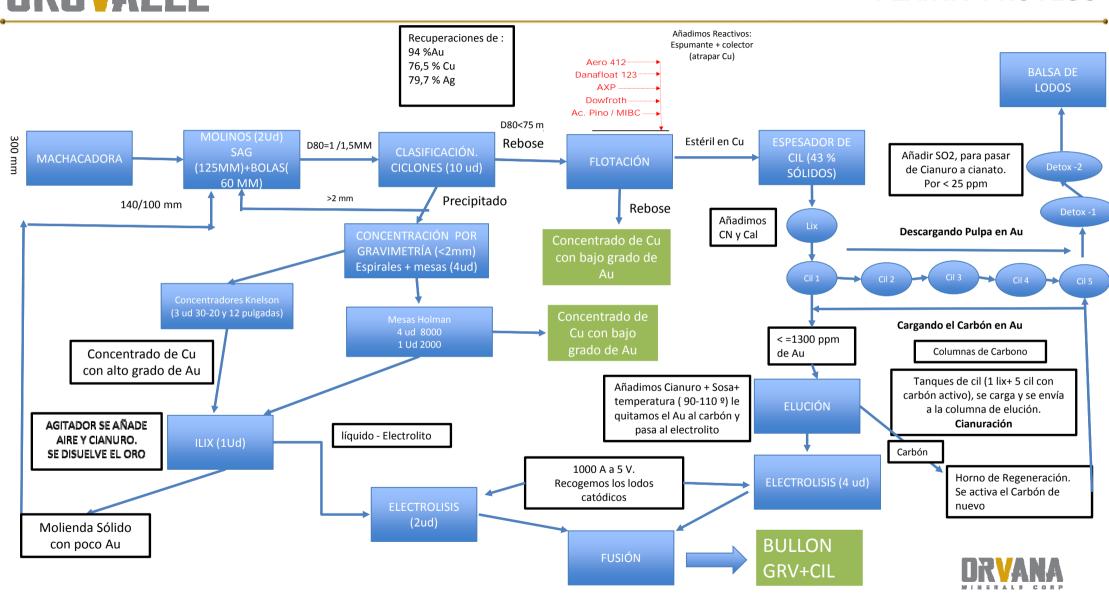
NAGOLITERAS.

ECT

OROVALLE

POZO ROBERTO:

- ULTIMO POZO INAGURADO EN ESPAÑA.
- ULTIMA TECNOLOGIA EN SISTEMAS Y SEGURIDAD
- COMPLETAMENTE AUTOMÁTICO
- VELOCIDAD DE 8 M/S
- CAPACIDAD MÁXIMA 3.000 T/ DIA.
- SISTEMA DE DOBLE EFECTO
- RAISE-BORING DE 5,5 ML DIÁMETRO Y 430 ML PROFUNDIDAD
- CABRESTANTE INGERSOLL-RAND 120 " X 56" CIR 1782-BR.
- CUENTA CON DOS MOTORES REGENERATIVOS DE 250 kw .
- 2 VARIADORES ABB ACS800



PLANTA -PROCESO

FLOTACIÓN:

Espumantes

Colectores

Promotores

Modificadores

CIANURACIÓN:

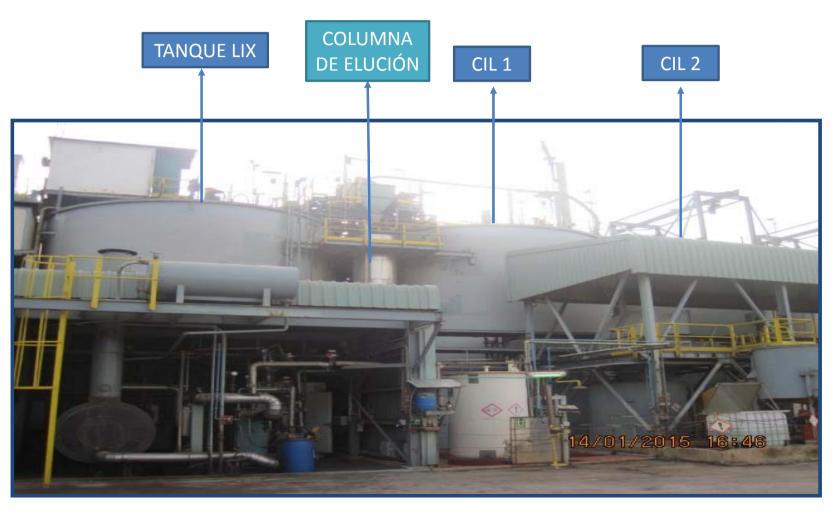
 $4 \text{ Au} + 8 \text{ Na(CN)} + \text{O}_2 + \text{H}_2\text{O} \leftrightarrow 4 \text{ NaAu(CN)}_2 + 4 \text{ NaOH}$

OXIDACIÓN DE CIANURO A CIANATO PROCESO INCO

 $CN^- + SO_2 + O_2 + H_2O \rightarrow OCN^- + H_2SO_4$

MOLINOS SAG y BOLAS

FLOTACIÓN

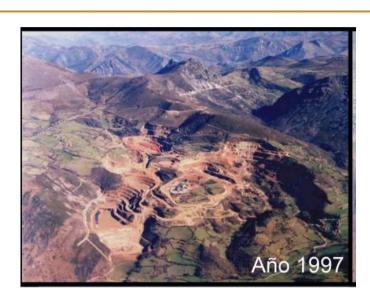

ESPESADOR DE CU

ESPESADOR CIL

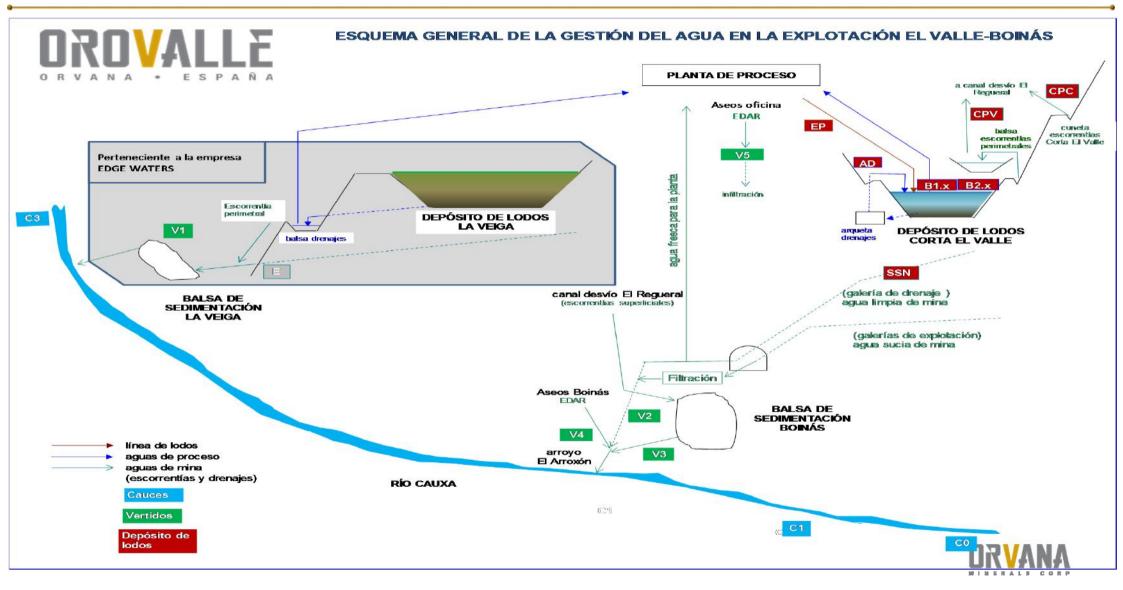
COLUMNA DE ELUCIÓN

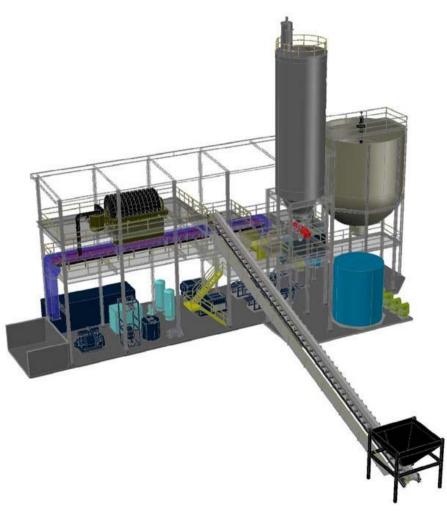
CELDAS DE ELECTROLISIS DE CIL

FUSIÓN



OROVALLE





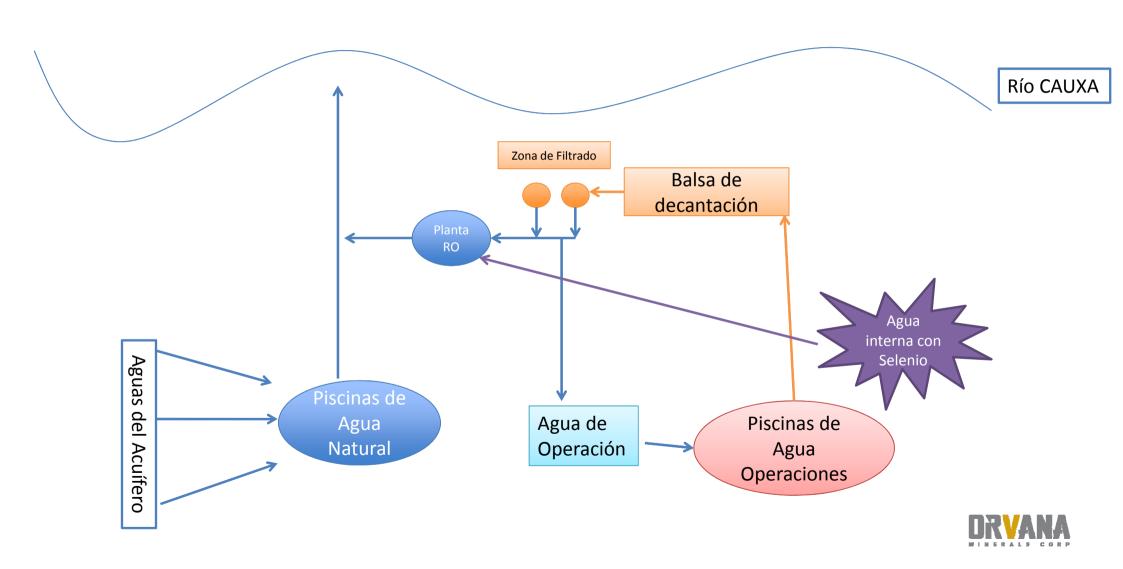
MEDIOAMBIENTE GESTIÓN DEL DEPÓSITO

MEDIOAMBIENTE GESTIÓN DE RESIDUOS PLANTA

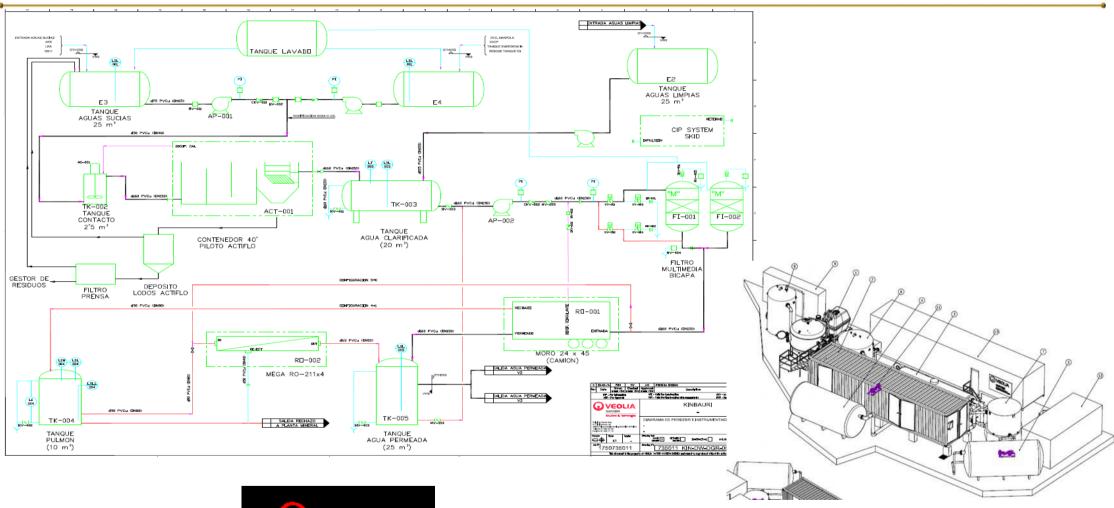
Para esta tarea, Orovalle trabaja en conjunto con la compañía OUTOTEC, experta en plantas de pasa, para diseñar una planta con el siguiente

FINALIDAD:

- > Lavado de nuestros residuos de planta.
- > Convertir en Inertes los residuos de planta.
 - ✓ Producir producto Inerte, no peligroso e impermeable


OBJETIVOS:

- > Disminuir el volumen de lodos en la balsa, cierre anticipado de la misma.
- ➤ Disminución del agua sobrenadante, por lo que con los pretratamientos oportunos se puedan ir enviando al rio como agua limpia.



MEDIOAMBIENTE GESTIÓN DE AGUAS - PLANTA RO

EIA:

Boinas: año 1996-Modificado en 2.004

Carles: año 1.998

DIA:

Boinas: 23-agosto-1996 ---- 27-junio-2005

Carles: 17-junio-2.000

AUTORIZACIONES AMBIENTALES INTEGRALES.

PLANTA AAI 37/06-30/04/2008

CONTROL EMISIONES. CONTROL RUIDO CONTROL VERTIDOS

BALSA AAI 16/05- 19/06/2006

VOLUMEN DE RESIDUOS ANALÍTICAS DE AGUAS VOLÚMENES DE AGUAS INCIDENCIAS

CONTROL DE VERTIDO CARLES

- **SECUELA DE MINAS DE MADRID**
- ❖ GRUPOS ESPECIALIZADO EN RECURSOS Y RESERVAS MINERALES.
- ❖ DEPARTAMENTOS DE OROVALLE DE GEOLOGÍA, PLANIFICACIÓN, MEDIOAMBIENTE, SEGURIDAD Y OPERACIONES.
- ❖ CESAR CASTAÑÓN
- **❖** ALFONSO MENENDEZ
- ❖ VEOLIA
- **OUTOTEC**

